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1.1 CHAPTER OBJECTIVES

In this chapter, you learn

• to understand the basic idea of clustering and its applications;

• how hierarchical clustering methods work;

• ways to measure distances between observations and clusters;

• to determine the optimal clustering solution using dendrograms, the elbow method, the Dunn index,
the Davies-Bouldin index and the silhouette coefficient;

• how non-hierarchical clustering methods work such as k-means, clustering with mixture models,
mean shift clustering, DBSCAN and Self-Organizing Maps (SOMs);

• evaluate and interpret clustering solutions using statistical measures as well as visualisations;

1.2 INTRODUCTION

Clustering is a descriptive analytics activity whose aim is to group a data set of observations into clusters or
segments so that the homogeneity within a cluster is maximized and the heterogeneity between clusters
is maximized. In other words, segments should be internally cohesive and externally well separated from
each other. The discovered clusters or segments can then be individually targeted using tailored strategies
and policies. Since there is no continuous nor categorical target variable to steer the learning process,
clustering is an example of unsupervised learning.

Clustering techniques have been applied in diverse settings. In marketing, they can be used to do market
segmentation (e.g., brand differentiation) and as such improve the understanding of the customer population
for targeted marketing or advertising. In text analytics, clustering can be applied to group text documents
discussing similar topics. In fraud detection, it can be useful to detect clusters with only a few observations
(e.g., insurance claims, credit card payments, transfers in an anti-money laundering setting), yet distant
from the rest of the population as such representing anomalous and thus fraudulent behavior. An example
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of this is shown in Figure 1.1 where the three red observations make up a separate, small cluster in terms
of the recency and frequency variables. These could then be labeled as suspicious and be further analyzed
in terms of their characteristics and potentially fraudulent behavior.

Figure 1.1: Clustering fraudulent claims.

Different types of clustering algorithms have been developed in the literature. At a high level, they can be
categorized as either hierarchical or non-hierarchical. Hierarchical methods seek to build a hierarchy of
clusters whereas non-hierarchical methods typically cluster observations into a pre-determined number of
clusters using an iterative procedure. Popular examples of hierarchical algorithms are agglomerative and
divisive algorithms. Popular examples of non-hierarchical algorithms are k -means clustering, DBSCAN and
self-organizing maps (SOMs). We elaborate on these in what follows.

1.3 HIERARCHICAL CLUSTERING

1.3.1 Introduction

Hierarchical clustering procedures aim at building a hierarchy of clusters. In Figure 1.2 both divisive and
agglomerative hierarchical clustering are visualised. The two most extreme clustering solutions are depicted
to the left, where all observations are put into their individual cluster, and to the right, where all observations
are put into one large cluster. Agglomerative methods start from the left and move to the right by each
step merging observations and/or clusters. Divisive methods start from the right and move to the left by
each time splitting clusters into smaller parts. The optimal clustering solution is then situated somewhere in
between as we discuss in what follows.

1.3.2 Distance metric

As already mentioned, clustering aims at grouping observations based on similarity. In order to do so, a
similarity measure needs to be adopted. Various similarity or distance measures have been introduced in
the literature as follows:

d(x,y)Manhattan = ∥x− y∥1 =
∑n

i=1 |xi − yi |
d(x,y)Euclidean = ∥x− y∥2 =

√∑n
i=1(xi − yi)2

d(x,y)cosine = x·y
∥x∥2∥y∥2

(1.1)

You can see the various distance measures visualized in Figure 1.3. The red dot at location (1,1) is the
reference observation for calculating the distances. Darker regions correspond to closer distances. Note
how the Manhattan distance results into diamond shaped regions, the Euclidean distance into circular
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Figure 1.2: Hierarchical clustering: divisive versus agglomerative clustering.

Figure 1.3: Visualisation of Manhattan, Euclidean and cosine distances.
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Accident Injuries Doctor Report Previous Claims Claim amount >1k
Transaction 1 Yes No Yes Yes Yes
Transaction 2 Yes No No Yes Yes
. . .

Table 1.1: Jaccard index, Simple Matching Coefficient and Hamming Distance.

shapes and the cosine distance into an orientation based pattern. The Euclidean distance is by far the most
commonly used distance metric.

Manhattan distance.
The Manhattan distance is named after the grid-like street layout of Manhattan, New York, where city
blocks are arranged in a rectangular pattern. Also called L1 distance or taxicab distance, it represents the
total distance a taxi would need to drive in a city laid out in a grid, having to drive along the streets rather
than ”as the crow flies” (Euclidean distance). The mathematical concept was first considered in the 19th
century but gained its common name in the mid-20th century with the rise of computational geometry.

As a final note, before calculating distances it is highly recommended to standardize variables using e.g.,
the z-scores (as discussed in Chapter??). This is to ensure that a variable measured on a wide scale (e.g.,
income from 0 to 1,000,000) does not overly influence another (e.g., years customer from 1 to 10) in the
distance calculations.

When categorical variables are present, various options can be pursued. The Jaccard distance measures
the similarity between two sets and is calculated as the size of the intersection divided by the size of the
union of the sets. For the example in Table 1.1, the Jaccard similarity would be calculated as 3/5 or 60%
since both transactions have Yes values for 3 out of 5 transactions. The Jaccard distance then equals 1
minus the Jaccard similarity. Note that by definition the Jaccard index only considers the presence of values
(so the Yes-Yes combinations). It can easily be generalized to categorical variables with more than two
values. The Simple Matching Coefficient (SMC) also considers the absence (so the No-No combinations). In
our example, the SMC would hence equal 4/5. The SMC distance metric then becomes 1/5. The Hamming
distance simply calculates the number of different values. In our example of Table 1.1 it would equal 1. Note
that the Hamming distance was especially developed for binary data, so in case of more than two values for
a categorical variable, it would require it to be, e.g., one-hot encoded (see Chapter??).

When dealing with data sets that have both continuous as well as categorical data, various options can
be pursued. A first one is to standardise the continuous data, one-hot encode the categorical data (as
discussed in Chapter??) and then use the Euclidean, Manhattan or cosine distance metrics for all variables.
Another option is to use the Gower distance which simply averages the Euclidean/Manhattan/Cosine
distance for the continuous variables and the SMC distance for the categorical variables. Let’s illustrate
this with a small example. Suppose we have the data in Table 1.2. Let’s now calculate the Gower distance
between Bart and Sarah using the normalized Manhattan distance for continuous variables and the SMC
distance for categorical variables. We normalize using the range to make sure the distances are always
between 0 and 1.The ranges for the continuous variables are: Recency: 15-2=13; Frequency: 10-2=8;
Monetary: 1000-200=800. We can then calculate the Manhattan distances between Bart and Sarah:

Recency : |10− 2|/13 = 8/13 = 0.6154
Frequency : |5− 10|/8 = 5/8 = 0.625
Monetary : |1000− 200|/800 = 800/800 = 1.0

So the average Manhattan distance becomes: (0.3846 + 0.375 + 0.25)/3 = 0.3365. The SMC distance
for both categorical variables between Bart and Sarah is 0.5 (both are single). Hence, the Gower distance
becomes: (0.3365 + 0.5)/2 = 0.41825. Note that this assumes equal weight between the continuous
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Recency Frequency Monetary Marital Status Employed
Bart 10 5 1000 Single Yes
Sarah 15 2 800 Single No
Tom 2 10 200 Married Yes

Table 1.2: Calculating the Gower distance.

and categorical variables. A straightforward extension is to use the number of continuous and categorical
variables as weights in the calculation, or alternatively use business knowledge in determining the weights.

John C. Gower.
John C. Gower (1930-2019) was a British statistician known for pioneering work in multivariate analysis
and data visualization. While working at Rothamsted Experimental Station, he developed the Gower
distance metric in 1971 to compare mixed data types (numerical, categorical, binary).

Finally, remark that to facilitate the distance calculation and cluster interpretation later on, it might be
recommended to do some unsupervised feature selection upfront. For the continuous variables, one
could calculate, e.g., the Pearson correlation and for the categorical variables the Chi-squared or mutual
information correlation. In case of highly correlated variables, one can then opt to keep only one of them.

1.3.3 Linkage methods

Besides the distances between individual observations, clustering methods also need to measure distances
between clusters of observations. This is done using a linkage criterion that will help decide when two
clusters should merge into a larger one (or similarly, when a large cluster should be divided into two smaller
ones). In single-linkage clustering the distance between clusters is measured as the minimal distance
between any two observations from the different clusters. Complete linkage clustering on the other hand,
measures the distance between two clusters as the maximum distance between any two observations
of those clusters. It avoids a problem occurring with single-linkage clustering, known as chaining, where
clusters are sometimes merged simply because two observations happen to lie close to one another, even
though most observations in the clusters lie quite far from each other. Complete linkage is reported to find
compact clusters of roughly equal diameter. A compromise between these two extremes is centroid-linkage,
where the distance between two clusters is simply defined as the distance between the cluster centers,
similar as in k -means clustering as we discuss below. In average linkage, the distance is measured as the
average distance between observations of each cluster. These distance metrics between two clusters C1

and C2 with cluster means µC1 and µC2 are summarized as follows

Dsingle−l inkage(C1,C2) = min
x∈C1,y∈C2

d(x, y)

Dcomplete−l inkage(C1,C2) = max
x∈C1,y∈C2

d(x,y)

Dcentroid−l inkage(C1,C2) = d(µC1 ,µC2)
Daverage−l inkage(C1,C2) =

1
|C1|·|C2|

∑
x∈C1

∑
y∈C2

d(x,y)

(1.2)

You can see these methods also illustrated in Figure 1.4.

Ward’s method is another approach to do hierarchical clustering. This method starts with each observation
in its individual cluster. To steer the clustering, it uses the Sum of Squares (SSE) (also called within-cluster
variance) calculated as follows:

SSE =

k∑
i=1

ni∑
j=1

(xi j − x̄i.)
2 (1.3)

where k is the number of clusters at a given step, ni is the number of observations in cluster i , xi j is
observation j in cluster i and x̄i. is the cluster average of cluster i . Note that at the start of the clustering
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Figure 1.4: Linkage methods for hierarchical clustering.

the SSE will equal 0 since all observations are in their own cluster. Ward’s method will then consider all
possible pairs of clusters and step by step pick the pair of clusters that gives the smallest increase in SSE
until all observations are in one cluster. The optimal number of clusters can then be determined using any
of the methods we discuss below.

1.3.4 Deciding upon the number of clusters

Hierarchical clustering does not require the number of clusters to be known beforehand. However, if a final
clustering solution is wanted (e.g., for market segmentation purposes), one still needs to decide on the
optimal level in the hierarchy and hence on the optimal number of clusters.

A first important aid is a dendrogram. This is a tree-like diagram that records the sequences of merges.
Let’s illustrate this with an example. Assume that we want to cluster birds in terms of their characteristics,
such as the way they look, the noise they make, what they eat, where they live, etc. You can see the
clustering process illustrated in Figure 1.5. First, we group chicken and duck, then parrot and canary. Step
3 adds pigeon to the chicken and duck cluster. Step 4 clusters owl and eagle. Step 5 merges the clusters
obtained in steps 2 and 3 and step 6 merges everything together. An obvious question is where we should
stop clustering? In Figure 1.6 you can see the corresponding dendrogram for our bird-clustering example.
The bottom of a dendrogram represents the individual data points. As you move up the dendrogram clusters
are formed until all observations are in one cluster at the top or root of the dendrogram. The vertical scale
gives the distance between clusters merged. These distances are typically derived from the linkage method
used (e.g., single, complete, centroid, average, or Ward’s method). The dendrogram can then be cut where
the distance jumps become too high suggesting a natural division or clustering in the data. In our example,
the red line indicates our optimal clustering. In other words, there are three clusters. We can then try and
assign meaningful interpretations to our clusters. For example, Cluster 1 has chicken, duck, and pigeon
and can be labeled as poultry. Cluster 2 has parrot and canary and can be labeled as exotic birds. Cluster
3 has owl and eagle and can be labeled as predators. Note that a good labelling of the clusters is very
important to facilitate the interpretation thereof. It is typically done by close collaboration between the data
scientist and business user.

A bit related is the elbow method. This method calculates the sum of squared errors (SSE) for various
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Figure 1.5: Bird clustering example.

Figure 1.6: Dendrogram for bird clustering example.
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number of clusters, k as follows:

SSE =

k∑
i=1

∑
x∈Ci

∥x− µi∥2 (1.4)

It then plots SSE against k and looks for an elbow point as shown in Figure 1.7. Based on the plot, one
could decide to put the optimal number of clusters to four as this is where the elbow point is reached.

Figure 1.7: Elbow method for determining the number of clusters.

Besides graphical aid, also various metrics have been introduced to determine the optimal number of
clusters. The Dunn index starts by calculating the cluster diameter or the maximum distance between any
two observations within the same cluster [Dunn, 1974]. Let’s call this Dintra. It then computes the distance
between each cluster observation and the observations in all the other clusters. The minimum of all these
distances is referred to as Dinter . The Dunn index can then be calculated as:

Dunn index =
Dinter

Dintra
(1.5)

Obviously, a higher Dunn index corresponds to a better clustering solution. It is a relative index whose value
depends upon the data set and clustering technique and is most useful to compare clustering solutions.

The Davies-Bouldin index can also be used to decide upon the optimal clustering [Davies and Bouldin,
1979]. It starts by calculating the within-cluster variability as follows:

Si =
1

|Ci |
∑
x∈Ci

∥x− µi∥ (1.6)

where Ci represents cluster i , |Ci | is the number of observations in cluster i and µi the center of cluster i . It
then computes the between-cluster variability for each pair of clusters Ci and Cj as follows:

Mi j = ∥µi − µj∥ (1.7)

Next it calculates the ratio for each cluster pair Ci and Cj :

Ri j =
Si + Sj

Mi j
(1.8)
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Obviously, we want the Ri j to be small for good clustering solutions since this indicates good separation.
Let’s now consider the worst-case value Di and calculate:

Di = max
j ̸=i

Ri j (1.9)

By considering the maximum, the index focuses on the most similar (or least well-separated) pair involving
Ci . If Di turns out to be big, it indicates significant cluster overlap of cluster Ci with another cluster.

In case of a clustering solution with k clusters we can now calculate the Davies-Bouldin (DB) index as the
overall average:

DB =
1

k

k∑
i=1

Di (1.10)

Obviously, a lower value of the Davies-Bouldin index corresponds to a better clustering since it shows
good separation between clusters and low variability within clusters.

The silhouette coefficient is also a popular measure for deciding upon the number of clusters [Rousseeuw,
1987]. For each observation i it first calculates the average (e.g., Euclidean) distance a(i) to all other
observations within its cluster. This represents the intra-cluster distance and should preferably be as small
as possible. Next, for every cluster C that does not contain observation i , the average distance of every
observation in C to observation i is calculated. The smallest of all these average distances is labelled b(i).
Obviously, a higher value for b(i) indicates better separation between the clusters. We can then calculate
the silhouette coefficient for each observation i as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(1.11)

By definition, s(i) ranges between -1 and +1. A value close to +1 indicates that the observation is well
located within its cluster, close to 0 that it’s on the boundary between clusters and -1 that it might be in the
wrong cluster. The silhouette coefficient of a clustering solution can then be calculated as the average of
the silhouette coefficients of all observations with higher values indicating a better clustering solution.

As a final remark, note that the business relevant interpretation of a clustering solution can also be an
important factor to help decide upon the optimal number of clusters.

1.4 k -MEANS CLUSTERING

k -means clustering is a very popular non-hierarchical clustering method. It starts by selecting k observations
which will serve as our initial cluster centroids or seeds. Each observation is then assigned to the cluster
that has the closest centroid (for example, in Euclidean sense). When all observations are assigned, the
positions of the k centroids are recalculated. This process is repeated for a fixed number of steps, or until
the cluster centroids no longer change. The algorithm is described in 1.

Let’s illustrate this with an example. Assume we start from a set of observations that are described by two
characteristics as shown in Figure 1.8. We now perform k -means clustering and set k to 2. In other words,
we try to find two clusters in the data. In Step 1, two observations are randomly chosen as our cluster
centers. They are depicted by the black circle and the red triangle, respectively in Figure 1.9. The remaining
observations are now assigned to both cluster centers by calculating the Euclidean distance. This results in
the black and red cluster as shown in Figure 1.10. In the next step, the cluster centers are re-calculated.
They are again depicted by the black circle and red triangle as shown in Figure 1.11. In Figure 1.12 you can
see all observations re-assigned based on the new cluster centers. In the next step, the new cluster centers
are calculated as shown in Figure 1.13. In Figure 1.14 you can see the observations re-assigned. This is
where the k -means clustering ends and results in the black and red clusters.
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Algorithm 1 K-Means Clustering

1: Input: Dataset D = {x1,x2, . . . ,xn}, number of clusters k
2: Output: Cluster assignments for each observation xi ∈ D
3: Initialize k centroids {c1, c2, . . . , ck} randomly from the observations in D
4: repeat
5: Assign each observation xi to the nearest centroid:

Assign xi to cluster j = arg min
j∈{1,...,k}

∥xi − cj∥

6: Update each centroid cj by computing the mean of all observations assigned to it:

cj ←
1

|Cj |
∑
xi∈Cj

xi

7: until centroids {c1, c2, . . . , ck} do not change significantly
8: return Cluster assignments for all observations xi

Figure 1.8: Data set for k -means clustering.

Figure 1.9: Selection of cluster centres.
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Figure 1.10: Cluster assignment.

Figure 1.11: Recalculating the cluster centers.

Figure 1.12: Cluster assignment.
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Figure 1.13: Calculating the new cluster centers.

Figure 1.14: Final cluster assignment.

The iterative process of calculating the new cluster centers and assigning all data points to the closest
one continues until the cluster centroids do not change significantly. Alternatively, in case of large data
sets, slow convergence or observations switching back and forth between clusters, k means can also be
terminated after a fixed number of steps.

This rather simple algorithm leads to the overall minimization of the distance from the data points to their
cluster centers. It works especially well for clusters that are spherical and roughly the same in size but is not
well suited to discover non-convex or irregularly shaped clusters. Remember that a cluster is considered
convex if any line segment connecting two observations within the cluster does not leave the cluster.

To decide upon k , one could try out different values and then use any of the graphical aids or metrics we
discussed in Section 1.3.4 to determine the optimal value. Furthermore, to check for the stability of the
clustering solution, it is recommended to try out different initial seeds where the solution that yields the
lowest overall distance measured, e.g., in terms of SSE or any of the metrics discussed in Section 1.3.4,
can be chosen.

Several variants of k means clustering have been introduced in the literature. k median clustering uses
the median to calculate the cluster centroids and is as such more robust to outliers. k + + clustering
improves the choice of the initial seeds. It picks the first seed at random and then chooses each next
seed with a probability proportional to the squared distance from the nearest already chosen seed. The
ensures the seeds are spread out more nicely. Once all seeds are chosen, standard k means is run.
In k-medoid clustering the cluster centers represent actual data points instead of fictitious ones which
contributes to both cluster interpretability as well as robustness to outliers [Kaufman and Rousseeuw, 2008].
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Spherical k-means is an extension that works especially well for high-dimensional data spaces, such as
those encountered in text clustering where each document is typically represented as a vector of term
frequencies or TF-IDF (term frequency-inverse document frequency) scores. In this case, the similarity
between observations is better captured by angles rather than by Euclidean distances. Hence, spherical
k -means uses the cosine metric as the distance metric. It assumes all observations are normalized to unit
length and as such lie on the surface of a unit sphere. The goal of spherical k -means is then to maximize the
overall cosine similarity between observations and their cluster centroids. Finally, fuzzy k means clustering
allows an observation to belong to multiple clusters using a membership function (which ranges between
zero and one) and as such supports overlapping clusters.

k-means clustering.
A famous statistical humor story involves the origin of k-means clustering. In the 1950s, when Bell Labs
was working on classifying telephone signals, their researchers supposedly picked ”k” because it was the
only letter not yet used in their equations that day. This may be apocryphal, but it amusingly suggests that
one of the most widely-used machine learning algorithms got its name not through careful mathematical
derivation, but because ”k” happened to be available.

1.5 CLUSTERING WITH MIXTURE MODELS

Another type of clustering assumes that observations in the same cluster are generated by the same
distribution. Finding these distributions then constitutes the objective of the clustering problem. Since one
can never be completely sure which clustering solution is the best, a cluster membership probability is
assigned to each observation as such resulting into a soft clustering.

In its most simple form, one assumes each cluster follows a Gaussian distribution though depending upon
the problem statement, other distributions can be used as well. Once the number of clusters is determined,
the clustering corresponds to finding proper values for the mean and variance of each cluster distribution.

The mixture probability density modeled is as follows:

p(x) =
K∑

k=1

πkN (x | µk,Σk) (1.12)

K is the number of Gaussians in the mixture and needs to be specified up front, πk is the weight for
each component with

∑K
k=1 πk = 1 and 0 ≤ πk ≤ 1 and N (x | µk,Σk) is the Gaussian probability

density function for component k . A typical method to determine the mixture parameters is Expectation
Maximization (EM) Dempster et al. [1977]. The algorithm is detailed in 2.

As with k-means clustering several runs can take place with different initial randomization to check for
robustness. The resulting solution is a set of soft clusters, where observations lie within several clusters,
with a probability for each. If one wants hard clusters, one can simply assign the observation to the cluster
with the highest cluster probability.

Figure 1.15 provides an example with a mixture of three Gaussian models for the Frequency and Monetary
variables.

1.6 MEAN SHIFT CLUSTERING

Mean Shift clustering was originally proposed in [Comaniciu and Meer, 2002]. It works as described
in Algorithm 3. It starts with each observation representing a cluster center, such that the number of
observations equals the number of initial clusters. Next, the distance is measured between each cluster
center c and the observations in its neighborhood xi , which is defined either as ∥c− xi∥ ≤ h or using a
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Algorithm 2 Expectation-Maximization (EM) for Gaussian Mixture Models

1: Input: Data points x1,x2, . . . ,xN , number of clusters K
2: Output: Mixture weights πk , means µk , and covariances Σk for each cluster
3: Initialize πk , µk , and Σk randomly for k = 1, . . . ,K
4: repeat
5: E-Step: calculate the probability γik that data point xi was generated by component k

γik =
πkN (xi | µk,Σk)∑K
j=1 πjN (xi | µj ,Σj)

6: M-Step: Update the parameters
• Update mixture weights:

πk =
Nk

N
, where Nk =

N∑
i=1

γik

• Update means:

µk =
1

Nk

N∑
i=1

γikxi

• Update covariances:

Σk =
1

Nk

N∑
i=1

γik(xi − µk)(xi − µk)
T

7: Check for convergence (e.g., change in log-likelihood below a pre-specified threshold or minimal
change in parameter values)

8: until Convergence criterion is met
9: Assign clusters: For each data point xi , assign it to the cluster with the highest responsibility γik if

hard clustering is desired.
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Figure 1.15: Clustering with mixture models.

Gaussian kernel as:

exp

(
−
∥xi − c∥2

2h2

)
.

Mean Shift then iteratively updates the position of each cluster center by directly assigning it to the
weighted mean of the positions of all observations in its neighborhood. This process is repeated until
convergence, where the cluster centers no longer move significantly. The final cluster centers represent the
modes of the underlying density function, and each data point is assigned to the nearest mode. This results
in a partitioning of the data into clusters based on density peaks, without requiring a predefined number
of clusters. Mean Shift is particularly effective for non-linearly separable data and can detect clusters of
arbitrary shapes.

The bandwidth parameter h controls the size of the neighborhood. A larger (smaller) h means a broader
(narrower) neighborhood, resulting in fewer (more) clusters. Two common methods for setting h are
Silverman’s rule:

h =

(
4σ5

3n

) 1
5

,

and Scott’s rule:
h = n−

1
d+4 ,

for Gaussian kernels where n is the number of observations, d the number of variables and σ the (pooled)
standard deviation. Alternatively, one can also determine h by maximizing a clustering quality metric (e.g.,
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Algorithm 3 Mean Shift Clustering

1: Input: Dataset D = {x1,x2, . . . ,xn}, bandwidth h
2: Output: Cluster assignments for each data point in D
3: Initialize C to include every observation xi as initial centroids
4: repeat
5: for each centroid c in C do
6: Compute weights for all observations xi ∈ D:

w(xi) = exp

(
−
∥xi − c∥2

2h2

)
7: Update c using the weighted mean:

c←
∑

xi∈D w(xi) · xi∑
xi∈D w(xi)

8: end for
9: until centroids c in C do not change significantly

10: Assign each observation xi ∈ D to the cluster with the nearest centroid in C
11: return Cluster assignments

Silhouette Score, Davies-Bouldin Index, elbow method, see Section 1.3.4) for varying values of h. This
approach is more computationally intensive but can yield better results.

Figure 1.16 provides an example of mean shift clustering on a two dimensional data set featuring
monetary and frequency variables. It can be seen that three clusters are found using a Gaussian kernel
with a bandwith parameter of h = 1.

Figure 1.16: Mean Shift clustering.

1.7 DBSCAN

DBSCAN stands for density-based spatial clustering of applications with noise. One of its key strengths is
that it discovers clusters of arbitrary shape even non-convex ones in contrast to k -means[Ester et al., 1996]
(see Figure 1.17). Remember that for convex clusters any line connecting two observations never leaves
the cluster. This is clearly not the case for both examples depicted in Figure 1.17.
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Figure 1.17: Examples of non-convex clusters.

The basic intuition of DBSCAN is to cluster observations in high density regions and mark observations
that lie in low-density regions as outliers. A first key concept is the ϵ-Neighborhood which consists of all
observations within a radius of ϵ from the observation p defined as

Nϵ(p) = {q ∈ data set D | dist(p, q) ≤ ϵ} (1.13)

You can see this illustrated in Figure 1.18. The ϵ-neighborhood of observation p is four, whereas the
ϵ-neighborhood of observation q is two. A second key parameter is MinPts. The density of an observation
is considered high with the ϵ-neighborhood contains at least MinPts observations. If MinPts equals four,
the density of p is considered high whereas the density of q is considered low.

Figure 1.18: The ϵ-neighborhood.

DBSCAN differentiates between three types of observations: an observation is a core observation if the
density around it is high. Hence, it has more than MinPts observations within its ϵ-neighborhood. These
are clearly observations located at the interior of a cluster. A border observation is an observation with low
density (or with fewer than MinPts observations within its ϵ-neighborhood) but located in the neighborhood
radius of a core observation. Border points are reached by the cluster but typically cannot further expand
the cluster because of low density. An outlier or noisy observation is not a core nor border observation. You
can see this illustrated in Figure 1.19 in case MinPts equals five.

Figure 1.19: Core observation, border observation and outlier in DBSCAN.

An observation q is directly density-reachable from an observation p if p is a core observation and q is
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in p’s ϵ-neighborhood. In Figure 1.20 with MinPts = 4, it can be seen that q is directly density-reachable
from p but p is not directly density-reachable from q as the measure is asymmetric and q is not a core
observation.

Figure 1.20: Direct density-reachability in DBSCAN.

An observation p is density-reachable from an observation q if there is a chain of points p1, . . . , pn,
with p1 = q, pn = p such that pi+1 is directly density-reachable from pi . You can see this illustrated in
Figure 1.21 if MinPts equals five. You can see that p1 is directly density-reachable from q, p2 is directly
density-reachable from p1 and p is directly density-reachable from p2. Hence, there is a chain from q to p
and p is density-reachable from q. This measure is also not symmetric and q is not density-reachable from
p as p is not a core observation.

Figure 1.21: Density-reachable in DBSCAN.

Finally, two observations p and q are density-connected if they are both density-reachable from an
observation o with respect to ϵ and MinPts. You can see this illustrated in Figure 1.22. Note that
density-connectivity is a symmetric measure.

Figure 1.22: Density connectivity in DBSCAN.
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A cluster can now be defined as a set of density-connected observations which is maximal with respect
to density-reachability. The observations not belonging to any cluster can then be labeled as outliers or
noise. We now have the necessary background to start introducing the DBSCAN clustering technique.
Assume we have a data set D and two parameters: ϵ and MinPts. A cluster C is a subset of D satisfying
two conditions:

• maximality condition: ∀p, q if p ∈ C and q is density-reachable from p, then q ∈ C.

• connectivity condition: ∀p, q ∈ C, p and q are density-connected

Note that a cluster contains both core points as well as border points.

The DBSCAN algorithm then works as follows: As shown above, at the end of the algorithm, the

Algorithm 4 DBSCAN

1: for each observation xi ∈ D do
2: if xi is not yet clustered then
3: if xi is a core observation then
4: find all observations density-reachable from xi

5: assign them to a new cluster
6: else
7: assign xi to noise
8: end if
9: end if

10: end for

observations not belonging to any cluster are considered as noise.

A common heuristic to set MinPts is to set it to the dimensionality of the data set plus one. To determine
ϵ a k -distance graph can be used. This graph plots the distance to the k -th nearest neighbor (which can be
set to, e.g., MinPts). The ϵ parameter can then be determined where this plot bends sharply upwards and
an elbow is obtained. Do note that often a trial-and-error approach is pursued with the number of outliers
detected, or any of the metrics discussed in Section 1.3.4 (e.g., SSE, Dunn index, Davies-Bouldin index,
etc) as important guiding criteria.

DBSCAN can handle clusters of different shapes and sizes. It can find non-convex clusters quite easily.
When using DBSCAN, there is also no need to fix the number of clusters upfront which differentiates it from
k-means clustering. However, one of the key drawbacks of DBSCAN is that it is not well suited to handle
varying densities.

1.8 SELF ORGANIZING MAPS

Teuvo Kohonen.
Teuvo Kohonen (1934-2021) was a Finnish computer scientist who pioneered early artificial neural
networks. He is best known for inventing the Self-Organizing Map (SOM), also called Kohonen maps,
while at the Helsinki University of Technology. His 1982 paper introducing SOMs has been cited over
20,000 times. He received numerous awards including the IEEE Neural Networks Pioneer Award and was
an Academician of the Academy of Finland, a rare honor. Despite his contributions to neural networks, he
humorously noted that he never used a personal computer, preferring to write his code on mainframes.

Self-organizing maps (SOMs) are a special type of neural network that enables clustering. They were first
introduced by Teuvo Kohonen in 1982 [Kohonen, 1982]. SOMs are unsupervised learning algorithms that
enable you to visualize and cluster high-dimensional data on a low-dimensional grid of neurons. Basically, a
SOM is a feed-forward neural network with two layers: an input layer and an output layer. The neurons in
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the output layer are usually arranged in a two-dimensional grid that is rectangular or hexagonal as you can
see illustrated in Figure 1.23. In the former case, every neuron has at most eight neighbors, whereas in the
latter case, every neuron has at most six neighbors.

Figure 1.23: Example SOM architectures.

Each input is connected to all neurons in the output layer with corresponding weights w = [w1, . . . ,wn],
with n equal to the number of inputs. In other words, every output neuron has its own combination of input
weights. The weights are then randomly initialized (for example, by drawing them from a standard normal
distribution). When a training observation x is presented to the SOM, the weight vector wc of each neuron
c is compared with x using, e.g., the Euclidean distance

d(x,wc) =

√√√√ n∑
i=1

(xi − wci)2 (1.14)

Note that, as always, it is important to standardize the data first (for example, by calculating the z-scores)
as discussed in Chapter XXX. The neuron that lies closest to x in the Euclidean sense is the winner or best
matching unit (BMU). The weight vector of the BMU and its neighbors in the SOM are then updated using
the following learning rule:

wi(t + 1) = wi(t) + hci(t)[x(t)−wi(t)] (1.15)

where t represents the time index during training and hci(t) defines the neighborhood of the BMU c, which
defines the region of influence.

The neighborhood functionhci(t) is a non-increasing function of time and distance from the BMU. Here
you can see two examples of neighborhood functions.

hci(t) = α(t) exp(− ||rc−ri ||2
2σ2(t) )

hci(t) = α(t) if ||rc − ri ||2 ≤ threshold; 0 otherwise
(1.16)

Note that rc and ri represent the location of the BMU and neuron i on the map, σ2(t) represents the
decreasing radius, and α(t) is the learning rate ranging between 0 and 1. Popular examples are

α(t) = A
t+B

α(t) = exp(−At)
(1.17)

The decreasing learning rate and radius give a stable map after a certain amount of training. Training is
then stopped when the BMUs remain stable, or after a fixed number of iterations, such as 500 times the
number of SOM neurons. As training proceeds, the map will start to self-organize and the neurons will
move toward the input observations, thereby creating clusters.

After the SOM training has been completed, we can start interpreting it. Various visualization aids can be
used for this purpose. A U or unified distance-matrix essentially superimposes a height Z dimension on top
of each neuron. It can be visualized using a distance map which visualizes the average distance between a
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neuron and its neighbors, whereby typically dark colors indicate a large distance and can be interpreted as
cluster boundaries. A second useful feature is a component plane, which visualizes the weights between
each specific input variable and its output neurons. As such, it provides a visual overview of the relative
contribution of each input attribute to the output neurons.

In Figure 1.24 you can see a example distance map for a 5-by-5 SOM. Remember, a distance map
basically visualizes the U-matrix, as defined earlier, as a heat map. The color coding indicates the average
distance between a neuron and neighboring neurons in terms of the connecting weights. In this figure, light
colors indicate a large distance, and therefore, can be interpreted as cluster boundaries.

Figure 1.24: Visualising the U-matrix.

As an example, suppose we want to cluster countries based on various characteristics such as the
Corruption Perception Index (CPI) ranges between 0 for highly corrupt countries and 10 for highly clean
countries, political rights, literacy and other information measuring a country’s demographic and macro-
economic information for the years 1996, 2000, and 2004 [Huysmans et al., 2006]. Figure 1.25 shows the
result of clustering this data onto a 15 by 15 hexagonal SOM map. Notice that uppercase notation refers to
the country in 2004, lowercase to the country in 2000, and sentence case to the country in 1996. From the
map, it can be observed that many European countries are situated in the upper right part of the SOM. The
Scandinavian countries are also nicely grouped in the top half of the SOM. Other similar clusters can be
found by inspecting the map.

In Figure 1.26 you can see an example of component planes for the variables: CPI, literacy and political
rights. The component plane for CPI to the left is colored in black and white. Dark regions indicate regions
with low values for the CPI index and thus with high corruption. Notice that the Scandinavian countries score
very well with low corruption. The lower right corner of the SOM is very dark corresponding to countries
with significant corruption. The component plane for literacy can then also be inspected. Darker regions
correspond to lower literacy. By combining the component planes for CPI and literacy, it can easily be seen
that lower literacy usually implies higher corruption. Finally, also the component plane for political rights can
be inspected. Again, it shows that the lower right corner of the map faces issues in terms of political rights.

For a small number of variables (for example, four or five at most), the codebook vector graph is an
excellent visualization of the contribution to the SOM of each variable [Verbeke et al., 2017]. A codebook
vector graph combines basically different component planes, as introduced earlier, in a single visualization.
It shows the relative importance of variables for each neuron in the map, by visualizing the relative sizes of
the weights of the connections between each neuron and the input variables. It can provide insight into the
composition of the data set in terms of segments as well as variations in the variables that define these
segments. In Figure 1.27 you can see an example of a codebook vector graph. Note that we defined five
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Figure 1.25: Clustering countries using a SOM.

clusters on the map. The contributions of the variables listed at the bottom can be clearly seen in each of
the clusters defined.

SOMs have various advantages and disadvantages. First, they are a very useful tool for exploratory data
analysis and for gaining some initial insights about the data. They can also be combined with decision trees
to further characterize the discovered segments. However, they are difficult to compare because there is
no objective function to be evaluated and compared. Also, extensive experimental evaluation is needed to
determine the size.

1.9 INTERPRETING CLUSTERING SOLUTIONS

Evaluating a clustering solution is by no means a trivial exercise since there exists no universal criterion.
From a statistical perspective, the sum of squared errors (SSE) can be computed. When comparing 2
clustering solutions, the one with the lowest SSE can then be chosen.

Besides a statistical evaluation, a clustering solution will also be evaluated in terms of its interpretation.
To facilitate the interpretation of a clustering solution, various options are available. A first one is to compare
cluster distributions with population distributions across all variables on a cluster by cluster basis. This
is illustrated in Figure 1.28 where the distribution of a cluster C1 is contrasted with the overall population
distribution for the Recency, Frequency and Monetary variables. It can be clearly seen that Cluster C1 has
observations with low recency values and high monetary values, whereas the frequency is relatively similar
to the original population.

Another way to explain a given clustering solution is by building a decision tree with the ClusterID as
the target. Assume we have the output depicted in Table 1.3 from a k-means clustering exercise with
k equal to four. Note that the last column contains the cluster identifier. We can now build a decision
tree with the ClusterID as the target variable as shown in Figure 1.29. This decision tree gives us a clear
insight into the distinguishing characteristics of the various clusters. For example, Cluster 2 is characterized
by observations having recency < 1 day and monetary > 1000. Hence, using decision trees, we can
easily assign new observations to the existing clusters. This is an example of how supervised or predictive
techniques can be used to explain the solution from a descriptive analytics exercise.
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Figure 1.26: Example component planes.

Claim Recency Frequency Monetary . . . . ClusterID
Claim1 Cluster2
Claim2 Cluster4
Claim3 Cluster3
Claim4 Cluster2
. . .

Table 1.3: Data set for cluster interpretation.

1.10 SEMI-SUPERVISED CLUSTERING

In semi-supervised clustering, known labelling information about the observations or relationships among
the observations is used to obtain better clustering solutions. This can be especially handy in situations
where data is scarce and these background constraints can help guide the clustering solution to desirable
outcomes. Two semi-supervised clustering methods can be identified: pointwise methods where labelling
information on a subset of the observations is available and pairwise methods, where must-link or cannot-link
constraints exist between some pairs of observations.

A straightforward point-wise clustering based method is seeded k -means clustering, which is basically a
regular k-means clustering method that initializes the cluster centroids to the centers of the observations
with known class labels [Basu et al., 2002]. For a two-class (good/bad) problem for example, the average
over all observations with prediction ‘good’ is calculated and becomes the first cluster centroid. Similarly a
cluster centroid is calculated for the predicted ‘bads’. Next, the traditional k-means clustering algorithm is
applied. It remains possible that observations with the same initial labels do end up in different clusters. If
this is not wanted, constrained k-means clustering can be applied, where observations with known labels
are not allowed to change cluster.

Examples of must(cannot)-link constraints are constraints specifying that two documents or images
should belong to the same cluster because they feature similar topics (e.g., textual description or images of
lions). In constrained k -means, both constraints are checked when re-assigning observations to clusters. In
case of violation, no re-assignment takes place. Alternatively, the constraints can be enforced by artificially
modifying the distance metric (i.e., decreasing it for must-link and increasing it for cannot-link) or adding
constraint violation penalties to the objective function. For more information, we refer to [Chapelle et al.,
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Figure 1.27: Example codebook vector graph.

Figure 1.28: Comparing cluster distributions with population distributions.
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Figure 1.29: Decision tree for cluster interpretation.

2006].

1.11 EXTERNAL CLUSTER VALIDATION

The idea of external cluster validation is to compare a clustering solution to a reference clustering obtained
from either another parameterization or algorithm, (a) human expert(s), or even the ground truth when
available. It could be used to verify whether patterns in the data have shifted due to, e.g., population drift.
Various metrics have been proposed for this purpose.

Suppose we have two clustering solutions, S1 and S2. Let’s now calculate the following

a = number of observation pairs that are in the same clusters in S1 and S2

b = number of observation pairs that are in different clusters in S1 and S2

c = number of observation pairs that are in the same clusters in S1 and in different clusters in S2

d = number of observation pairs that are in different clusters in S1 and in the same cluster in S2

(1.18)
The Rand index is then computed as follows:

Rand =
a + b

a + b + c + d
=

a + b(n
2

) (1.19)

It represents the frequency of agreements between both clusterings across all possible observation pairs
and ranges between 0 and 1.

Another way is to calculate Meila’s Variation of Information (VI) [Meila, 2007]. The entropy H(C) of a
clustering C measures the uncertainty in the clustering and is calculated as:

H(C) = −
k∑

i=1

|Ci |
N

log2
|Ci |
N

(1.20)

where Ci is the set of elements in cluster i , k is the number of clusters, |Ci | is the number of observations
in cluster i and N is the total number of observations. Mutual Information (MI) measures the amount of
information shared between two clustering solutions, C1 and C2, and is defined as:

I(C1,C2) =

k1∑
i=1

k2∑
j=1

|C1i ∩ C2j |
N

log2
N|C1i ∩ C2j |
|C1i ||C2j |

(1.21)

where C1i are clusters in C1, C2j clusters in C2 with k1 and k2 being their respective numbers of
clusters. Intuitively, we can think of I(C1,C2) as follows. Suppose we are given a random observation.
The uncertainty about its cluster in C2 is measured by H(C2). Suppose we are told which cluster the
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observation belongs to in C1. I(C1,C2) then measures the reduction in uncertainty about which cluster
this observation belongs to in C2 after knowing this information, averaged over all observations. Meila’s
Variation of Information (VI) can then be calculated as:

VI(C1,C2) = H(C1) + H(C2)− 2I(C1,C2) (1.22)

VI(C1,C2) is positive number with a lower value indicating higher similarity between both clustering
solutions. For identical clusterings, VI(C1,C2) will equal 0.

1.12 CONCLUDING REMARKS

Clustering is one of the most popular descriptive analytics activities with excellent algorithms already
developed several decades ago. In this chapter we discussed various clustering techniques and summarize
their key properties in Table 1.4.

Clustering Technique Scalability Scalability Non-Convex Clusters Parameterization
(Observations) (Variables)

Hierarchical Clustering Low Medium Yes Medium
K-Means High Low No Easy
Mixture Models Medium Medium Yes Difficult
Mean Shift Medium Medium Yes Medium
DBSCAN Medium Medium Yes Medium
Self-Organizing Maps Medium High Yes Medium

Table 1.4: Comparison of Clustering Techniques

Clustering has been widely used in marketing and risk analysis to profile customer segments. In fact,
the goal of clustering can be two-fold. First, the clusters revealed could serve to help define marketing
actions targeting each of them in different ways. Alternatively, the result of a clustering exercise can also be
the input for a second stage predictive model aimed at further differentiating behavior within a cluster in a
supervised way.
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